São inúmeros os relatórios, artigos e menções sobre como o uso de ferramentas de Analytics baseadas em Inteligência Artificial (IA) e Machine Learning (ML) poderão auxiliar nos processos de planejamento da demanda, melhorando a acuracidade afetada pelo aumento da complexidade no portfólio, nos canais de distribuição e, também, no ambiente competitivo.
Hoje, na maioria das empresas, o tamanho da equipe responsável por tratar e analisar os dados com as ferramentas tradicionais de séries temporais e modelos de regressão impõe uma limitação nas possibilidades de análise, obrigando ao agrupamento de séries para previsões top-down, restringindo o número de variáveis exógenas inseridas no modelo e o tratamento e manutenção do baseline de poucas séries, o que prejudica a acuracidade.
Mas o que podemos esperar dessas novas soluções?
Em primeiro lugar, é necessário compreender que a melhora da acuracidade virá pelos aspectos de Augmentation e Automation do processo de planejamento da demanda. Augmentation se refere ao crescimento no volume de dados tratados e variáveis consideradas nos modelos, permitindo a identificação de padrões imperceptíveis ao “olho humano”.
Já Automation aborda a possibilidade de automatizar o tratamento dos dados das séries de vendas, corrigindo o baseline e usando informações de venda mais granulares, que sem os ajustes adequados resulta em erros maiores.
Além da melhora na acuracidade do plano tático mensal, podemos esperar a identificação de tendências de consumo de longo prazo, ajudando na definição de portfólio e no desenvolvimento de novos produtos, e também a sofisticação dos mecanismos de reposição de curtíssimo prazo, com mecanismos de demand sensing.
No entanto, ainda existem barreiras significativas para a adoção de IA e ML no processo de planejamento da demanda, como a baixa maturidade do processo atual, falta de conhecimento técnico e de integração na cadeia para obtenção de dados, entre outros.
Fonte : Logística Brasil